493 research outputs found

    Non-Gaussian fluctuations near the QCD critical point

    Full text link
    We study the effect of the QCD critical point on non-Gaussian moments (cumulants) of fluctuations of experimental observables in heavy-ion collisions. We find that these moments are very sensitive to the proximity of the critical point, as measured by the magnitude of the correlation length xi. For example, the cubic central moment of multiplicity ~ xi^4.5 and the quartic cumulant ~ xi^7. We estimate the magnitude of critical point contributions to non-Gaussian fluctuations of pion and proton multiplicities.Comment: 4 pages, 3 figure

    Hydro+: hydrodynamics with parametric slowing down and fluctuations near the critical point

    Full text link
    The search for the QCD critical point in heavy-ion collision experiments requires dynamical simulations of the bulk evolution of QCD matter as well as of fluctuations. We consider two essential ingredients of such a simulation: a generic extension of hydrodynamics by a_parametrically_ slow mode or modes ("Hydro+") and a description of fluctuations out of equilibrium. By combining the two ingredients we are able to describe the bulk evolution and the fluctutations within the same framework. Critical slowing down means that equilibration of fluctuations could be as slow as hydrodynamic evolution and thus fluctuations could significantly deviate from equilibrium near the critical point. We generalize hydrodynamics to partial-equilibrium conditions where the state of the system is characterized by the off-equilibrium magnitude of fluctuations in addition to the usual hydrodynamic variables -- conserved densities. We find that the key element of the new formalism -- the extended entropy taking into account the off-equilibrium fluctuations -- is remarkably similar to the 2PI action in quantum field theory. We show how the new Hydro+ formalism reproduces two major effects of critical fluctuations on the bulk evolution: the strong frequency dependence of the anomalously large bulk viscosity as well as the stiffening of the equation of state with increasing frequency or wave-number. While the agreement with known results confirms its validity, the fact that Hydro+ achieves this within a local and deterministic framework gives it significant advantages for dynamical simulations.Comment: 46 pages, 5 figure

    Proton number fluctuation as a signal of the QCD critical end-point

    Get PDF
    We argue that the event-by-event fluctuation of the proton number is a meaningful and promising observable for the purpose of detecting the QCD critical end-point in heavy-ion collision experiments. The long range fluctuation of the order parameter induces a characteristic correlation between protons which can be measured. The proton fluctuation also manifests itself as anomalous enhancement of charge fluctuations near the end-point, which might be already seen in existing data.Comment: 4 pages, version accepted in PR

    Dynamic universality class of the QCD critical point

    Full text link
    We show that the dynamic universality class of the QCD critical point is that of model H and discuss the dynamic critical exponents. We show that the baryon diffusion rate vanishes at the critical point. The dynamic critical index zz is close to 3.Comment: 12 pages. To be published in PRD. Appendix about isospin density added, introduction expande
    • …
    corecore